我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:双彩网 > 元编译程序 >

C++11模版元编程

归档日期:07-02       文本归类:元编译程序      文章编辑:爱尚语录

  模版元编程(template metaprogram)是C++中最复杂也是威力最强大的编程范式,它是一种可以创建和操纵程序的程序。模版元编程完全不同于普通的运行期程序,它很独特,因为模版元程序的执行完全是在编译期,并且模版元程序操纵的数据不能是运行时变量,只能是编译期常量,不可修改,另外它用到的语法元素也是相当有限,不能使用运行期的一些语法,比如if-else,for等语句都不能用。因此,模版元编程需要很多技巧,常常需要类型重定义、枚举常量、继承、模板偏特化等方法来配合,因此编写模版元编程比较复杂也比较困难。

  现在C++11新增了一些模版元相关的特性,不仅可以让我们编写模版元程序变得更容易,还进一步增强了泛型编程的能力,比如type_traits让我们不必再重复发明轮子了,给我们提供了大量便利的元函数,还提供了可变模板参数和tuple,让模版元编程“如虎添翼”。本文将向读者展示C++11中模版元编程常用的技巧和具体应用。

  模版元程序由元数据和元函数组成,元数据就是元编程可以操作的数据,即C++编译器在编译期可以操作的数据。元数据不是运行期变量,只能是编译期常量,不能修改,常见的元数据有enum枚举常量、静态常量、基本类型和自定义类型等。

  元函数是模板元编程中用于操作处理元数据的“构件”,可以在编译期被“调用”,因为它的功能和形式和运行时的函数类似,而被称为元函数,它是元编程中最重要的构件。元函数实际上表现为C++的一个类、模板类或模板函数,它的通常形式如下:

  meta_func的执行过程是在编译期完成的,实际执行程序时,是没有计算动作而是直接使用编译期的计算结果的。元函数只处理元数据,元数据是编译期常量和类型,所以下面的代码是编译不过的:

  模板元编程产生的源程序是在编译期执行的程序,因此它首先要遵循C++和模板的语法,但是它操作的对象不是运行时普通的变量,因此不能使用运行时的C++关键字(如if、else、for),可用的语法元素相当有限,最常用的是:

  模板元中的if-else可以通过type_traits来实现,它不仅仅可以在编译期做判断,还可以做计算、查询、转换和选择。

  模板元中的for等逻辑可以通过递归、重载、和模板特化(偏特化)等方法实现。

  type_traits是C++11提供的模板元基础库,通过type_traits可以实现在编译期计算、查询、判断、转换和选择,提供了模板元编程需要的一些常用元函数。下面来看看一些基本的type_traits的基本用法。

  借助这个简单的trait,我们可以很方便地定义编译期常量,比如定义一个值为1的int常量可以这样定义:

  获取常量则通过one_type::value来获取,这种定义编译期常量的方式相比C++98/03要简单,在C++98/03中定义编译期常量一般是这样定义的:

  可以看到,通过C++11的type_traits提供的一个简单的integral_constant就可以很方便的定义编译期常量,而无需再去通过定义enum和static const变量方式去定义编译期常量了,这也为定义编译期常量提供了另外一种方法。C++11的type_traits已经提供了编译期的true和false,是通过integral_constant来定义的:

  除了这些基本的元函数之外,type_traits还提供了丰富的元函数,比如用于编译期判断的元函数:

  这只是列举一小部分的type_traits元函数,type_traits提供了上百个方便的元函数,读者可以参考,这些基本的元函数用法比较简单:

  type_traits还提供了编译期选择traits:std::conditional,它在编译期根据一个判断式选择两个类型中的一个,和条件表达式的语义类似,类似于一个三元表达式。它的原型是:

  另外一个常用的type_traits是std::decay(朽化),它对于普通类型来说std::decay(朽化)是移除引用和cv符,大大简化了我们的书写。除了普通类型之外,std::decay还可以用于数组和函数,具体的转换规则是这样的:

  std::decay除了移除普通类型的cv符的作用之外,还可以将函数类型转换为函数指针类型,从而将函数指针变量保存起来,以便在后面延迟执行,比如下面的例子。

  根据enable_if的字面意思就可以知道,它使得函数在判断条件B仅仅为true时才有效,它的基本用法:

  在上面的例子中对模板参数T做了限定,即只能是arithmetic(整型和浮点型)类型,如果为非arithmetic类型,则编译不通过,因为std::enable_if只对满足判断式条件的函数有效,对其他函数无效。

  可以通过enable_if来实现编译期的if-else逻辑,比如下面的例子通过enable_if和条件判断式来将入参分为两大类,从而满足所有的入参类型:

  对于arithmetic类型的入参则返回0,对于非arithmetic的类型则返回1,通过arithmetic将所有的入参类型分成了两大类进行处理。从上面的例子还可以看到,std::enable_if可以实现强大的重载机制,因为通常必须是参数不同才能重载,如果只有返回值不同是不能重载的,而在上面的例子中,返回类型相同的函数都可以重载。

  C++11的type_traits提供了近百个在编译期计算、查询、判断、转换和选择的元函数,为我们编写元程序提供了很大的便利。如果说C++11的type_traits让模版元编程变得简单,那么C++11提供的可变模板参数和tuple则进一步增强了模板元编程。

  C++11的可变模版参数(variadic templates)是C++11新增的最强大的特性之一,它对参数进行了高度泛化,它能表示0到任意个数、任意类型的参数。关于它的用法和使用技巧读者可以参考笔者在程序员2015年2月A上的文章:泛化之美--C++11可变模版参数的妙用,这里不再赘述,这里将要展示的如何借助可变模板参数实现一些编译期算法,比如获取最大值、判断是否包含了某个类型、根据索引查找类型、获取类型的索引和遍历类型等算法。实现这些算法需要结合type_traits或其它C++11特性,下面来看看这些编译期算法是如何实现的。

  我们可以在IntegerMax的基础上轻松的实现获取最大内存对齐值的元函数MaxAlign。

  这个IndexOf的实现比较简单,在展开参数包的过程中看是否匹配到特化的IndexOfT, T, Rest...,如果匹配上则终止递归将之前的value累加起来得到目标类型的索引位置,否则将value加1,如果所有的类型中都没有对应的类型则返回-1;

  At的实现比较简单,只要在展开参数包的过程中,不断的将索引递减至0时为止即可获取对应索引位置的类型。接下来看看如何在编译期遍历类型。

  这里for_each的实现是通过初始化列表和逗号表达式来遍历可变模板参数的。

  可以看到,借助可变模板参数和type_traits以及模板偏特化和递归等方式我们可以实现一些有用的编译期算法,这些算法为我们编写应用层级别的代码奠定了基础,后面模板元编程的具体应用中将会用到这些元函数。

  C++11提供的tuple让我们编写模版元程序变得更灵活了,在一定程度上增强了C++的泛型编程能力,下面来看看tuple如何应用于元程序中的。

  C++11的tuple本身就是一个可变模板参数组成的元函数,它的原型如下:

  tuple在模版元编程中的一个应用场景是将可变模板参数保存起来,因为可变模板参数不能直接作为变量保存起来,需要借助tuple保存起来,保存之后再在需要的时候通过一些手段将tuple又转换为可变模板参数,这个过程有点类似于化学中的“氧化还原反应”。看看下面的例子中,可变模板参数和tuple是如何相互转换的:

  上面的例子print实际上是输出可变模板参数的内容,具体做法是先将可变模板参数保存到tuple中,然后再通过元函数MakeIndexes生成一个整形序列,这个整形序列就是IndexSeq0,1,2,整形序列代表了tuple中元素的索引,生成整形序列之后再调用print_helper,在print_helper中展开这个整形序列,展开的过程中根据具体的索引从tuple中获取对应的元素,最终将从tuple中取出来的元素组成一个可变模板参数,从而实现了tuple“还原”为可变模板参数,最终调用print打印可变模板参数。

  tuple在模板元编程中的另外一个应用场景是用来实现一些编译期算法,比如常见的遍历、查找和合并等算法,实现的思路和可变模板参数实现的编译期算法类似,关于tuple相关的算法,读者可以参考笔者在github上的代码:。

  function_traits用来获取函数语义的可调用对象的一些属性,比如函数类型、返回类型、函数指针类型和参数类型等。下面来看看如何实现function_traits。

  由于可调用对象可能是普通的函数、函数指针、lambda、std::function和成员函数,所以我们需要针对这些类型分别做偏特化。其中,成员函数的偏特化稍微复杂一点,因为涉及到cv符的处理,这里通过定义一个宏来消除重复的模板类定义。参数类型的获取我们是借助于tuple,将参数转换为tuple类型,然后根据索引来获取对应类型。它的用法比较简单:

  这个variant可以接受已经定义的那些类型,看起来有点类似于c#和java中的object类型,实际上variant是擦除了类型,要获取它的实际类型的时候就稍显麻烦,需要通过boost.visitor来访问:

  通过C++11模版元实现的Variant将改进值的获取,将获取实际值的方式改为内置的,即通过下面的方式来访问:

  这种方式更方便直观。Variant的实现需要借助前文中实现的一些元函数MaxInteger、MaxAlign、Contains和At等等。下面来看看Variant实现的关键代码,完整的代码请读者参考笔者在github上的代码。

  实现Variant首先需要定义一个足够大的缓冲区用来存放不同的类型的值,这个缓类型冲区实际上就是用来擦除类型,不同的类型都通过placement new在这个缓冲区上创建对象,因为类型长度不同,所以需要考虑内存对齐,C++11刚好提供了内存对齐的缓冲区aligned_storage:

  它的第一个参数是缓冲区的长度,第二个参数是缓冲区内存对齐的大小,由于Varaint可以接受多种类型,所以我们需要获取最大的类型长度,保证缓冲区足够大,然后还要获取最大的内存对齐大小,这里我们通过前面实现的MaxInteger和MaxAlign就可以了,Varaint中内存对齐的缓冲区定义如下:

  其次,我们还要实现对缓冲区的构造、拷贝、析构和移动,因为Variant重新赋值的时候需要将缓冲区中原来的类型析构掉,拷贝构造和移动构造时则需要拷贝和移动。这里以析构为例,我们需要根据当前的type_index来遍历Variant的所有类型,找到对应的类型然后调用该类型的析构函数。

  这里,我们通过初始化列表和逗号表达式来展开可变模板参数,在展开的过程中查找对应的类型,如果找到了则析构。在Variant构造时还需要注意一个细节是,Variant不能接受没有预先定义的类型,所以在构造Variant时,需要限定类型必须在预定义的类型范围当中,这里通过type_traits的enable_if来限定模板参数的类型。

  这里enbale_if的条件就是前面实现的元函数Contains的值,当没有在预定义的类型中找到对应的类型时,即Contains返回false时,编译期会报一个编译错误。

  最后还需要实现内置的Vistit功能,Visit的实现需要先通过定义一系列的访问函数,然后再遍历这些函数,遍历过程中,判断函数的第一个参数类型的type_index是否与当前的type_index相同,如果相同则获取当前类型的值。

  Visit功能的实现利用了可变模板参数和function_traits,通过可变模板参数来遍历一系列的访问函数,遍历过程中,通过function_traits来获取第一个参数的类型,和Variant当前的type_index相同的则取值。为什么要获取访问函数第一个参数的类型呢?因为Variant的值是唯一的,只有一个值,所以获取的访问函数的第一个参数的类型就是Variant中存储的对象的实际类型。

  C++11中的一些特性比如type_traits、可变模板参数和tuple让模版元编程变得更简单也更强大,模版元编程虽然功能强大,但也比较复杂,要用好模版元,需要我们转变思维方式,在掌握基本的理论的基础上,再认真揣摩模版元的一些常用技巧,这些技巧是有规律可循的,基本上都是通过重定义、递归和偏特化等手法来实现的,当我们对这些基本技巧很熟悉的时候再结合不断地实践,相信对模版元编程就能做到“游刃有余”了。

  后记:本文的内容主要来自于我在公司内部培训的一次课程,因为很多人对C++11模板元编程理解得不深入,所以我觉得有必要拿出来分享一下,让更多的人看到,就整理了一下发到程序员杂志了,我相信读者看完之后对模版元会有全面深入的了解。

本文链接:http://rhone-credit.com/yuanbianyichengxu/268.html